Solution:
Given the triangle ABC as shown below:
To evaluate angle A,
Step 1: Identify the sides of the triangle ABC.
Thus, using A as the angle of focus,
![\begin{gathered} AB\implies\text{hypotenuse} \\ AC\implies\text{Adjacent} \\ BC\implies\text{Opposite} \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/2lb0pwlfmb32rlkeh9e6ocusx9luu8cnar.png)
Step 2: Write a trigonometric equation to measure A
Using trigonometric ratio,
![\begin{gathered} \tan \text{ A= }(opposite)/(Adjacent) \\ =(BC)/(AC) \\ \text{where BC=45, AC=28} \\ \text{thus,} \\ \tan \text{ A=}(45)/(28) \\ \Rightarrow A=\tan ^(-1)((45)/(28)) \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/wiawcg64mdqqe24ezsppglfb2scm9sn3el.png)
Hence, the trigonometric equation is
![A=\tan ^(-1)((45)/(28))](https://img.qammunity.org/2023/formulas/mathematics/college/y46mp4fikzaz4en82frgt0pxbfm22ocv63.png)