79.5k views
2 votes
Use implicit differentiation to find dy/dx of the equation y(sin x) = x^3+ cos Y

User Shvet
by
5.5k points

1 Answer

3 votes

ANSWER :

The answer is :


y^(\prime)=(3x^2-y\cos x)/(\sin x+\sin y)

EXPLANATION :

From the problem, we have the equation :


y(\sin x)=x^3+\cos y

In implicit differentiation, we will differentiate each term :


(d)/(dx)[y(\sin x)]=(d)/(dx)(x^3)+(d)/(dx)(\cos y)

Simplify :


\begin{gathered} (d)/(dx)[y(\sin x)]=y(\cos x)+y^(\prime)(\sin x) \\ \\ (d)/(dx)(x^3)=3x^2 \\ \\ (d)/(dx)(\cos y)=-y^(\prime)\sin y \end{gathered}

That will be :


\begin{gathered} (d)/(dx)[y(\sin x)]=(d)/(dx)(x^3)+(d)/(dx)(\cos y) \\ \\ y\cos x+y^(\prime)\sin x=3x^2-y^(\prime)\sin y \end{gathered}

Express the equation as y' in terms of the other variables.


\begin{gathered} y\cos x+y^(\prime)\sin x=3x^2-y^(\prime)\sin y \\ y^(\prime)\sin x+y^(\prime)\sin y=3x^2-y\cos x \\ y^(\prime)(\sin x+\sin y)=3x^2-y\cos x \\ \\ y^(\prime)=(3x^2-y\cos x)/(\sin x+\sin y) \end{gathered}

User Pacheco
by
5.4k points