To find the measure of a side in a right triangle as given (have a angle of 90º) you use the trigonometric function. Use the value of the angle W=31º
![\tan \alpha=(opposite)/(adjacent)](https://img.qammunity.org/2023/formulas/mathematics/college/c5qrynsxmaxxkbni8e1iht4qa5p57zh8kn.png)
The opposite side of angle W is XV and the adjacent side is y:
![tan31=(8.4ft)/(y)](https://img.qammunity.org/2023/formulas/mathematics/college/q44hty6f0mcehvm3vdg6u0zq26aqcvyq87.png)
Use this equation to find the value of side WX (y):
![\begin{gathered} y\cdot\tan 31=8.4ft \\ y=(8.4ft)/(\tan 31) \\ \\ y=13.979ft \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/v5w6xfheg9byghsff2u8ddkchykibc0erq.png)
Then, side WX is 14.0 ft (rounded to the nearest tenth)