Given:
The force constant of a spring is k = 100 N/m
The mass of the box is 55 g = 0.055 kg
The maximum compression is
![\begin{gathered} x_(max)=\text{ 11 cm} \\ =0.11\text{ m} \end{gathered}](https://img.qammunity.org/2023/formulas/physics/college/z2x0md8jcdmi8eklau17lzu4t7ggq9900u.png)
Required:
Speed of the box when it is compressed to x = 7 cm = 0.07 m
Step-by-step explanation:
The speed of the box can be calculated as
![\begin{gathered} v=\sqrt{(k)/(m)}*\sqrt{(x_(max)^2-x^2)} \\ =\sqrt{(100)/(0.055)}*√(((0.11)^2-(0.07)^2)) \\ =3.618\text{ m/s} \end{gathered}](https://img.qammunity.org/2023/formulas/physics/college/fasv13ka4hh45zd3879mw1u3f87oag9vsr.png)
Final Answer: The speed of the box is 3.618 m/s.