183k views
1 vote
Given cos(α)=7/9 and sin(α)<0, calculate the exact value of cot(α).

User Rarp
by
4.5k points

1 Answer

0 votes

From the identity


\sin ^2(\alpha)+\cos ^2(\alpha)=1

we can find the value for sin(α). Using our value for the cosine and solving the identity for sin(α), we have


\begin{gathered} \sin ^2(\alpha)+((7)/(9))^2=1 \\ \sin ^2(\alpha)=1-((7)/(9))^2 \\ \sin ^2(\alpha)=1-(7^2)/(9^2) \\ \sin ^2(\alpha)=1-(49)/(81) \\ \sin ^2(\alpha)=(81)/(81)-(49)/(81) \\ \sin ^2(\alpha)=(32)/(81) \\ \sin (\alpha)=\pm_{}\sqrt[]{(32)/(81)} \end{gathered}

Since sin(α) < 0, we have


\sin (\alpha)=-_{}\sqrt[]{(32)/(81)}=-\frac{4\sqrt[]{2}}{9}

The cot(α) is defined as the ratio between the cosine and sine of alpha.


\cot (\alpha)=(\cos(\alpha))/(\sin(\alpha))

Then, the cot(α) is


\cot (\alpha)=\frac{(7)/(9)}{-\frac{4\sqrt[]{2}}{9}}=-\frac{7}{4\sqrt[]{2}}=-\frac{7\sqrt[]{2}}{8}

This is the exact value of cot(α).


\cot (\alpha)=-\frac{7\sqrt[]{2}}{8}

User Pree
by
4.2k points