To find the length of the string we need to remember that in any right triangle:
![\sin \theta=\frac{\text{opp}}{\text{hyp}}](https://img.qammunity.org/2023/formulas/mathematics/college/ydvwh93e8ix4jf0thvjfld4e663bjcdi9s.png)
In this case the angle is 48°, the opposite leg is 90 and the hypotenuse will be the length of the string then we have that:
![\begin{gathered} \sin 48=\frac{90}{\text{hyp}} \\ \text{hyp}=(90)/(\sin 48) \\ \text{hyp}=121.1 \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/high-school/lt92j9xdn3ee4a7vot9vkwcodidmqtab6w.png)
Therefore the length of the string is 121.1 ft