Given the distance of 382 miles, and a velocity of 760 miles/hour and a time of 0.583 hour, we can writte the following equation:
![382\text{ miles}=760(miles)/(hour)*0.583hour+b](https://img.qammunity.org/2023/formulas/mathematics/college/fmz3xxtcfw33lkanhpcp070jo58z5b1t2w.png)
Then the intercept b is:
![\begin{gathered} b=382-760*0.583 \\ b=-61.08\text{ miles} \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/e2r225ae7gk2wwsz8akqj2dqz6zz8nfhpv.png)
Hence the equation for the first data set is:
![distance=0.583*speed-61.08](https://img.qammunity.org/2023/formulas/mathematics/college/4yycwws47bpkhe3o5rriru9tqu54dw98i4.png)
Now the next dataset:
![\begin{gathered} 382miles=(535miles)/(hour)*1.25hour+b \\ b=-286.5\text{ miles} \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/4kjkvmvkqw8zas0ie0nqpodjjwv6ztgxga.png)
Hence the equation for the second point is:
![distance=1.25*speed-286.5](https://img.qammunity.org/2023/formulas/mathematics/college/6cicmgxmt41u80aiqhc7dc397fltj4a2ly.png)
Next, for the third point. By hyperloop, a round trip takes 0.583*2=1.166 hour (go and back), hence in a 12-hour day:
![(12)/(1.166)=10.29\text{ trips}](https://img.qammunity.org/2023/formulas/mathematics/college/xawb8widv9bfqhf28eq5aqvcbd00a8d3j6.png)
Hence by hyperloop we got 10 trips.
On the other way, by airplane it takes 1.25*2=2.5hour:
![(12)/(2.5)=4.8\text{ trips}](https://img.qammunity.org/2023/formulas/mathematics/college/q1aaot9iueedw7f8y0nhpt4z95m8s2sfmz.png)
Then by airplane we got 4 round trips.