Explanation:
Step 1. We have a cylinder with a radius of 4cm and a height of 10cm.
![\begin{gathered} r=4cm \\ h=10cm \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/aggza0d4hafagqmqty0ky3rcazt6531cqn.png)
And we also have the density of the cylinder:
![p=12\frac{g\text{ }}{cm^3}](https://img.qammunity.org/2023/formulas/mathematics/college/kchqdsvn3k3u42cx2f138rceozfejxh60w.png)
Step 2. We need to find the weight, which in this case is the mass of the cylinder, using the following formula:
![p=(m)/(V)](https://img.qammunity.org/2023/formulas/chemistry/college/jrtkdzo38nwntn2d2l0u839uqhy7m6atsc.png)
where p is the density, m is the mass, and V is the volume of the cylinder.
Step 3. The volume is:
Substituting the known values and using
![\pi=3.1416](https://img.qammunity.org/2023/formulas/mathematics/college/smvhdt6zwerqnj6f6uidh6gm1a71lurd4u.png)
![V=(3.1416)(4cm)^2(10cm)](https://img.qammunity.org/2023/formulas/mathematics/college/m93lcalyofbtak04a2wi8gij8k44052zp1.png)
Solving the operations
![V=502.656cm^3](https://img.qammunity.org/2023/formulas/mathematics/college/dmh9ik31kqbxtls9v2indopur6k53nwyp7.png)
Step 3. Now we go back to our density formula:
![p=(m)/(V)](https://img.qammunity.org/2023/formulas/chemistry/college/jrtkdzo38nwntn2d2l0u839uqhy7m6atsc.png)
and substitute the known values of the density and the volume:
![12\text{ }g/cm^3=(m)/(502.656cm^3)](https://img.qammunity.org/2023/formulas/mathematics/college/ijk0hipvok6vw62k27or0aqq5wxln14jki.png)
Solving to find the mass:
![\begin{gathered} 12g/cm^3*502.656cm^3=m \\ \downarrow \\ 6,031.872g=m \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/bvojoc7raj3xwd27wria3e3pngurmgsot0.png)
rounding the mass to the nearest gram:
![6,032=m](https://img.qammunity.org/2023/formulas/mathematics/college/djutjlraz9ooq916t14cvh0r4xjxfnsnja.png)
The mass in grams is 6,032.
Answer: 6,032