If l and m are parallel, this means that the angles I'm going to show you in red must be equal:
So what I'm saying is that:
![\alpha=7x+5](https://img.qammunity.org/2023/formulas/mathematics/college/q9rkgoldva4n6yo18k3q96c9n6cbwccai6.png)
Also, since the angle under alpha and the angle (5x+19) are supplementary:
![\beta+(5x+19)=180º](https://img.qammunity.org/2023/formulas/mathematics/college/t81dxg8zlxnyjgwasinf2ieunm3ref3xks.png)
And, as you can see, beta and alpha are supplementary too, so:
![\alpha+\beta=180º](https://img.qammunity.org/2023/formulas/mathematics/college/xr9cm5d02kka078vjtfnme9ivjsbz8hkqv.png)
From the second equation we clear beta:
![\beta=180º-(5x+19)](https://img.qammunity.org/2023/formulas/mathematics/college/avh3p4ywaa8qftlnpmoxqzyp0l4xoxsx0q.png)
And we replace it in the equation of beta and alpha. Also, we have to replace alpha with the expression in the first equation:
![\alpha+\beta=(7x+5)º+(180º-(5x+19)º)=180º](https://img.qammunity.org/2023/formulas/mathematics/college/t14kjh7kzu2okdjgs0xuhygffdvim5qni3.png)
And then, we just clear the x:
I'll take the parenthesis out.
![7x+5+180-5x-19=180](https://img.qammunity.org/2023/formulas/mathematics/college/3khllr1ogv6iw2y5pj5hxfc5h6psm042hn.png)
We group the x and add up the constants:
![(7x-5x)+(5+180-19)=180](https://img.qammunity.org/2023/formulas/mathematics/college/wyrx1rk45p89u278364lg6iujbb7zo43kx.png)
![2x+166=180](https://img.qammunity.org/2023/formulas/mathematics/college/sm1xz99l0v1eir1bagonoun7iw0h1smfrt.png)
166 goes to the other side as a substraction and the 2 goes dividing:
![x=(180-166)/(2)](https://img.qammunity.org/2023/formulas/mathematics/college/8dyc0y8qpe2q6yry4a9kkxdzwsbhuzjw0k.png)
Finally, the value of x is:
![x=7](https://img.qammunity.org/2023/formulas/mathematics/college/zq1e40da7ft5m7vp2pp4z6wy99lb3uqekj.png)