Solution
It is given that the width of a rectangle is 2 inches longer than the height.
If the height is h inches,
The width of the rectangle is (2 + h) inches
If the diagonal measurement is 58 inches.
Using Pythagoras theorem, the relationship between the three sides is given as
![h^2+(2+h)^2=58^2](https://img.qammunity.org/2023/formulas/mathematics/college/4g88v07cvl0ivs3u081eze6zhgi0rdtt29.png)
Expanding the brackets;
![(2+h)^2=(2+h)(2+h)=2(2+h)+h(2+h)=4+2h+2h+h^2=4+4h+h^2](https://img.qammunity.org/2023/formulas/mathematics/college/k3pc4pvvuz5l4gjk2oj6hrdl7kqr23qe1h.png)
![\begin{gathered} \Rightarrow h^2+4+4h+h^2=58 \\ \\ \Rightarrow2h^2+4h=58-4 \\ \\ \Rightarrow2h^2+4h=54 \\ \\ \Rightarrow h^2+2h-27=0 \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/9gblficuibcxv7lxgk0kwx8grz04vubmsp.png)
Using the quadratic formula,
![\begin{gathered} h=(-2\pm√(2^2-4(1)(-27)))/(2) \\ \\ \Rightarrow h=(-2\pm√(4+108))/(2) \\ \\ \Rightarrow h=(-2\pm4√(7))/(2) \\ \\ \Rightarrow h=-1\pm2√(7) \\ \\ \Rightarrow h\approx4.3\text{ inches} \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/dklqfcq2j3q22un6ctoljjxdce58xaei4g.png)
Hence, the height is 4.3 inches