Given the compound interest formula:
![C(t)=C_0(1+(r)/(n))^(n\cdot t)](https://img.qammunity.org/2023/formulas/mathematics/college/hqwt12c5gqde4pq89hczfe0dbx1lchphyl.png)
Where C₀ is the initial amount in the account, r is the interest rate, and n is the number of times the interest is compounded in one year. From the problem, we identify:
![\begin{gathered} C_0=9100 \\ r=0.03 \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/izy8kcfoj7uly6sh0475ksvpua9rhdowon.png)
Additionally, there are 52 weeks in a year, so if the interest is compounded weekly:
![n=52](https://img.qammunity.org/2023/formulas/mathematics/college/ysgtxso8byea5681bcg1q1s5wqxtuqvhxn.png)
Using these values in the equation:
![\begin{gathered} C(t)=9100\cdot(1+(0.03)/(52))^(52t) \\ C(t)=9100\cdot((5203)/(5200))^(52t) \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/36zd35ernpfqj93yaen3u0h6pe56za39o1.png)
If the money is left for 5 years, then t = 5, so the amount of money after 5 years is:
![\begin{gathered} C(5)=9100\cdot((5203)/(5200))^(52\cdot5)=9100\cdot((5203)/(5200))^(260) \\ C(5)=10572.23 \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/m3xat2xzgh6g5koeghwqtw56w2c9xoq2zz.png)
There are $10,572.23 in the bank account after 5 years.