First part
numerator f cubed g to the power of negative 2
The numerator can be written as
![f^3g^(-2)](https://img.qammunity.org/2023/formulas/mathematics/high-school/b7g05ob4eltdod1dtq9d1cxm2umfcmubag.png)
Second part
denorminator h raised to the power of negative 1
The numerator can be written as
![h^(-1)](https://img.qammunity.org/2023/formulas/mathematics/high-school/4giufx6b864sdsv7odsdu3rltj8vedi06d.png)
combining part one and two
Open parentheses fraction - fraction - close parentheses to the power of 4
This gives
![((f^3g^(-2))/(h^(-1)))^4](https://img.qammunity.org/2023/formulas/mathematics/high-school/agcemfahkveg9z52smgxtqtz67umuccd0v.png)
simplifying the expression to remove negative exponent
Simplifying the numerator
![\begin{gathered} f^3g^(-2)=f^3* g^(-2) \\ f^3g^(-2)=f^3*(1)/(g^2) \\ f^3g^(-2)\text{ = }(f^3)/(g^2) \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/high-school/u47s7rvlwb07bvd3cycf3z4na3k8nmfwzj.png)
simplfying the denorminator
![h^(-1)\text{ = }(1)/(h)](https://img.qammunity.org/2023/formulas/mathematics/high-school/hwn1u0eyzj72hw17fx5pzk582ppcjfc1uk.png)
combining simplfied values for numerator and denorminator in the general form we have
![\begin{gathered} ((f^3g^(-2))/(h^(-1)))^4\text{ = }(((f^3)/(g^2))/((1)/(h)))^4 \\ ((f^3g^(-2))/(h^(-1)))^4=\text{ (}(f^3)/(g^2)* h)^4\text{ } \\ ((f^3g^(-2))/(h^(-1)))^4\text{ = (}(f^3h)/(g^2))^4 \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/high-school/j2f1ehniq2peccj6hcb4ydg418hfk7hcmu.png)
Hence, the simplified form of the expression is
![((f^3h)/(g^2))^4](https://img.qammunity.org/2023/formulas/mathematics/high-school/9i2twsc3tpal6uk6fwynh1afdwd6lkfiqw.png)