To answer this question, we need to use the binomial theorem, and we have the identity when we raise the binomial to 4:
![(a+b)^4=a^4+4a^3b+6a^2b^2+4ab^3+b^4](https://img.qammunity.org/2023/formulas/mathematics/college/zfhb41fljisb5tdqx14yz75edr6522zuwe.png)
And we also have that:
![(a-b)^4=a^4-4a^3b_{}+6a^2b^2-4ab^3+b^4](https://img.qammunity.org/2023/formulas/mathematics/college/mrycuey6c4yfih7pgpovqd4k0f06tpbq32.png)
And now, we know that the values for a and b are:
![a=\sqrt[]{5},b=\sqrt[]{2}](https://img.qammunity.org/2023/formulas/mathematics/college/drlblp4emht7q6vah42uiz6bv24wuiec8x.png)
Then, we also know that we need the result for:
![(a+b)^4+(a-b)^4](https://img.qammunity.org/2023/formulas/mathematics/college/7as0yy5qi8uommhw026kupkcl1siiaxzsl.png)
Then, if we substitute the equivalent expressions, we have:
![(a^4+4a^3b+6a^2b^2+4ab^3+b^4)+(a^4-4a^3b_{}+6a^2b^2-4ab^3+b^4)](https://img.qammunity.org/2023/formulas/mathematics/college/5sasod3wejgfo28qz0dfvl9h6nk7hn0vkm.png)
Simplifying, we have - we need to add the like terms as follows:
![a^4+a^4+4a^3b-4a^3b+6a^2b^2+6a^2b^2+4ab^3-4ab^3+b^4+b^4](https://img.qammunity.org/2023/formulas/mathematics/college/73mqeh3ua3jph4bcdibbcvqrq3e8jc9hd6.png)
Therefore:
![2a^4+2(6a^2b^2)+2b^4=2a^4+12a^2b^2+2b^4](https://img.qammunity.org/2023/formulas/mathematics/college/87r79i7q1spqpd47g9nk3dfmmkcljb6nt6.png)
We see that some terms were canceled since they are the same with opposite signs:
![\begin{gathered} 4a^3b-4a^3b=0 \\ 4ab^3-4ab^3=0 \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/s64cb9noarw0gvv38zhy6co5bp7gidr9jh.png)
Now, we can substitute the values for a and b as follows:
![a=\sqrt[]{5},b=\sqrt[]{2}](https://img.qammunity.org/2023/formulas/mathematics/college/drlblp4emht7q6vah42uiz6bv24wuiec8x.png)
We need to remember that:
![\sqrt[]{5}=5^{(1)/(2)},\sqrt[]{2}=2^{(1)/(2)}](https://img.qammunity.org/2023/formulas/mathematics/college/sjyfqkduy6xwj9jvcc1oqxkl6ly4ej3r9h.png)
Then we have:
![2(5^{(1)/(2)})^4+12(5^{(1)/(2)})^2(2^{(1)/(2)})^2+2(2^{(1)/(2)})^4](https://img.qammunity.org/2023/formulas/mathematics/college/8zysk15msrhmn7k2vgxg2vlp1dj0sd3mvt.png)
Thus
![2(5^{(4)/(2)})+12(5^{(2)/(2)})(2^{(2)/(2)})+2(2^{(4)/(2)})](https://img.qammunity.org/2023/formulas/mathematics/college/60iyzxdb1sqg0ls3qm91y8unibjc80w7dc.png)
![\begin{gathered} 2(5^2)+12(5)(2)+2(2^2) \\ 2(25)+12(10)+2(4) \\ 50+120+8=178 \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/a8oicp7ww9nzvt9q91fxwuan5fogyz0ubo.png)
In summary, therefore, we have that:
![(\sqrt[]{5}+\sqrt[]{2})^4+(\sqrt[]{5}-\sqrt[]{2})^4=178](https://img.qammunity.org/2023/formulas/mathematics/college/x1d4g24y3tqogl05vvlya348ox7nj10i7c.png)