Given,
The height difference, h=1.23 m
The blood pressure at the aorta, P₁=104 mmHg
The density of the blood, ρ=1060 kg/m³
From Pascal's law, the pressure difference is given by,
![\begin{gathered} (P_1-P_2)=\rho gh \\ \Rightarrow P_2=P_1-\rho gh \end{gathered}](https://img.qammunity.org/2023/formulas/physics/college/2sf7zna4yf3c2jof2wfo2brbvz7yqk18ar.png)
Where P₂ is the required pressure and g is the acceleration due to gravity.
Let us calculate the value of ρgh as it will be in the pascal.
On substituting the known values,
![\begin{gathered} \rho gh=1060*9.8*1.23 \\ =12777.24\text{ Pa} \end{gathered}](https://img.qammunity.org/2023/formulas/physics/college/qyag50osxjyrlp2ar93qh0qcsj46on79pm.png)
On converting it to mmHg,
![\rho gh=12777.24\text{ Pa}\approx96\text{ mmHg}](https://img.qammunity.org/2023/formulas/physics/college/hf84et3nar5y0zlojdlei5k5oq85spqrez.png)
Therefore the pressure in a person's foot is,
![\begin{gathered} P_2=104-96 \\ =8\text{ mmHg} \end{gathered}](https://img.qammunity.org/2023/formulas/physics/college/p4cub0n94lg5jge6vvw50uzdqe5h53i6hm.png)
Therefore the average blood pressure in a person's foot is 8 mmHg