ANSWER
![\begin{gathered} A)2176782336 \\ B)1402410240 \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/w0f9uh9awqggcivk83270ad35khshorx61.png)
Step-by-step explanation
A) We want to find how many 6 character passwords are possible if characters can be repeated.
There are 26 letters of the alphabet and 10 numeric digits (0 - 9).
This means that each number slot has 36 choices that can be made.
Therefore, if the characters can be repeated, it means that the number of 6 character passwords possible is:
![\begin{gathered} 36^6 \\ \Rightarrow2176782336 \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/3hsgbd9raclexoa8whqyb115qeof1h3cf9.png)
B) There are still 36 choices possible but this time there will not be any repetition.
To find the number of possible 6 character passwords, we apply the permutation formula:
![^nP_r=(n!)/((n-r)!)](https://img.qammunity.org/2023/formulas/mathematics/high-school/gdpdqcyk4odbluf8cnit8vgom9giz385zb.png)
Therefore, we have:
![\begin{gathered} ^(36)P_6=(36!)/((36-6)!)=(36!)/(30!) \\ \Rightarrow(36\cdot35\cdot34\cdot33\cdot32\cdot31\cdot30!)/(30!) \\ \Rightarrow36\cdot35\cdot34\cdot33\cdot32\cdot31 \\ \Rightarrow1402410240 \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/ftk3t00xulk6lsgvwhwx888li3jdqfux3v.png)
That is the answer.