70.7k views
2 votes
In the diagram, q₁ = +4.60 x 10-6 C,92 +3.75 x 10-6 C, and 93 = -8.30 x 10-5 C.Find the magnitude of the net force on 92.0.350 m9192↑0.155 m93(Make sure you know the direction of each force! Oppositesattract, similar repel.)

In the diagram, q₁ = +4.60 x 10-6 C,92 +3.75 x 10-6 C, and 93 = -8.30 x 10-5 C.Find-example-1
User Pieroxy
by
4.0k points

1 Answer

7 votes

Given:

• q1 = +4.60 x 10⁻⁶ C

,

• q2 = +3.75 x 10⁻⁶ C

,

• q3 = -8.30 x 10⁻⁵ C.

,

• d12 = 0.350 m

,

• d23 = 0.155 m

Let's find the magnitude of the net force on q2.

• First find the force acting on charge 1 and 2:


\begin{gathered} F_(12)=-(kq_1q_2)/((d_(12))^2) \\ \\ F_(12)=-\frac{9*10^9*4.60\operatorname{*}10^(-6)*3.75\operatorname{*}10^(-6)}{0.350^2} \\ \\ F_(12)=-1.27\text{ N} \end{gathered}

• Let's find the force acting on charge 2 with respect to change 3:


\begin{gathered} F_(23)=(kq_1q_2)/((d_(23))^2) \\ \\ F_(23)=\frac{9*10^9*3.75\operatorname{*}10^(-6)*8.30\operatorname{*}10^(-5)}{0.155^2} \\ \\ F_(23)=116.60\text{ N} \end{gathered}

• Now, for the magnitude of the net force on q2, we have:


\begin{gathered} F_(net)=\sqrt{(F_(12))^2+(F_(23))^2} \\ \\ F_(net)=√((-1.27)^2+(116.60)^2) \\ \\ F_(net)=√(1.6129+13595.56) \\ \\ F_(net)=√(13597.1729) \\ \\ F_(nrt)=116.60\text{ N} \end{gathered}

Therefore, the magnitude of the force on q2 is 116.6 N.

• ANSWER:

116.6 N

User Brydenr
by
4.9k points