Answer
![\left(√(10),288.4°\right),\left(-√(10),108.4°\right)](https://img.qammunity.org/2023/formulas/mathematics/college/ro4bv8a0i3rnvbjeseqvmt64mgju78dj3s.png)
Step-by-step explanation
The polar coordinates can be represented as (r, θ).
Where;
r = √(x² + y²) and θ = tan⁻¹ (y/x)
Hence, the polar coordinates that represent the same point as the rectangular coordinate (1, -3) are calculated below:
![\begin{gathered} x=1,y=-3 \\ r=√(1^2+(-3)^2)=√(1+9)=\pm√(10) \\ \\ \theta=tan^(-1)(-(3)/(1))=tan^(-1)(-3)=-71.57 \\ \theta=-71.57+360=288.43^0 \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/nha9kjiyk306l661yao41rxmglnk48jzcd.png)
So the answers that apply are:
![\begin{gathered} \left(\pm√(10),288.4°\right) \\ \Rightarrow\left(√(10),288.4°\right),\left(-√(10),(288.4-180)°\right) \\ =\left(√(10),288.4°\right),\left(-√(10),108.4°\right) \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/iyom1v1fk2oudr0farpit2eauq5a424vua.png)
The second and the last options apply.