Given the initial expression
![\sin ^(-1)(-\frac{\sqrt[]{3}}{2})](https://img.qammunity.org/2023/formulas/mathematics/college/ab6o077xnkka7pc5sqja2gcno8xeggy49v.png)
Set
![\begin{gathered} \sin ^(-1)(-\frac{\sqrt[]{3}}{2})=x \\ \Rightarrow\sin x=-\frac{\sqrt[]{3}}{2} \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/nnz47784coer9qiu2asigh0dzexjgg8ph8.png)
On the plane, using the unitary circle
Furthermore,
![\begin{gathered} \sin x=(O)/(H) \\ \Rightarrow(O)/(H)=-\frac{\sqrt[]{3}}{2}=\frac{-\frac{\sqrt[]{3}}{2}}{1} \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/ba0ir6qotldetgzhti4uqq01zvx8bepyjw.png)
This is a well-known triangle,
Therefore, the answer is

x=-pi/3 is the answer (notice that it corresponds to the blue angle in the first figure)
Remember that the domain of arcsin(x) is [-pi/2,pi/2]