Answer:
The solution to the system of equation is;
![\begin{gathered} r=5 \\ y=15 \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/high-school/nxsxx0uohgntmokibwcl5u13kqzuhc5vej.png)
Step-by-step explanation:
Given the system of equations;
![\begin{gathered} 3r+2y=45\text{ -----------1} \\ 4r-y=5\text{ ----------2} \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/high-school/8ohk9omsu9f4rye5ntd8989wbwbwwcx1b5.png)
Let us solve by elimination, multiply equation 2 by 2 and add to equation 1 to eliminate y;
![\begin{gathered} 4r(2)-y(2)=5(2) \\ 8r-2y=10\text{ -----------3} \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/high-school/d4zgnxsr97ftvbtcex7hqqaxml6n5p85if.png)
adding to equation 1;
![\begin{gathered} 3r+8r+2y-2y=45+10 \\ 11r=55 \\ r=(55)/(11) \\ r=5 \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/high-school/kzz4v3zk5nnw04z1f9a98d278fdk155i2i.png)
we can now use the value of r to solve for y;
![\begin{gathered} 3r+2y=45 \\ 3(5)+2y=45 \\ 15+2y=45 \\ 2y=45-15 \\ 2y=30 \\ y=(30)/(2) \\ y=15 \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/high-school/4kuvfohm6u9f9t326frlvalzm5rvnm4fjo.png)
Therefore, the solution to the system of equation is;
![\begin{gathered} r=5 \\ y=15 \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/high-school/nxsxx0uohgntmokibwcl5u13kqzuhc5vej.png)