The factored form of the quadratic equation is:

Where x1 and x2 are the roots of the equation.
So, in order to factorate this trinomial, let's find its roots using the quadratic formula:
![\begin{gathered} x^2+11x+30 \\ a=1,b=11,c=30 \\ x_1=\frac{-b+\sqrt[]{b^2-4ac}}{2a}=\frac{-11+\sqrt[]{121-120}}{2}=(-11+1)/(2)=-5 \\ x_2=(-11-1)/(2)=-6 \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/btexiezd4uocc18c7rs9o30v30skvfuy4c.png)
So the roots are -5 and -6, so we have:

The factored form is (x + 5)(x + 6)