25.0k views
2 votes
Divide using synthetic division. Write down the answer as a polynomial.x^3-5x^2-2x+24=0; (x+2)

User Tanieka
by
7.8k points

1 Answer

6 votes

we are given the following polynomial:


x^3-5x^2-2x+24=0

we are asked to use synthetic division by:


x+2

first we need to find the root of "x + 2":


\begin{gathered} x+2=0 \\ x=-2 \end{gathered}

Now we do the synthetic division using the following array:


\begin{bmatrix}{1} & {-5} & {-2} \\ {\square} & {\square} & {\square} \\ {\square} & {\square} & {\square}\end{bmatrix}\begin{bmatrix}{24} & {} & {} \\ {\square} & {} & {} \\ {\square} & {} & {}\end{bmatrix}\begin{cases}-2 \\ \square \\ \square\end{cases}

Now we lower the first coefficient and multiply it by -2 and add that to the second coefficient:


\begin{bmatrix}{1} & {-5} & {-2} \\ {\square} & {-2} & {\square} \\ {1} & {-7} & {\square}\end{bmatrix}\begin{bmatrix}{24} & {} & {} \\ {\square} & {} & {} \\ {\square} & {} & {}\end{bmatrix}\begin{cases}-2 \\ \square \\ \square\end{cases}

Now we repeat the previous step. We multiply -7 by -2 and add that to the next coefficient:


\begin{bmatrix}{1} & {-5} & {-2} \\ {\square} & {-2} & {14} \\ {1} & {-7} & {12}\end{bmatrix}\begin{bmatrix}{24} & {} & {} \\ {\square} & {} & {} \\ {\square} & {} & {}\end{bmatrix}\begin{cases}-2 \\ \square \\ \square\end{cases}

Now we repeat the previous step. we multiply 12 by -2 and add that to the next coefficient:


\begin{bmatrix}{1} & {-5} & {-2} \\ {\square} & {-2} & {14} \\ {1} & {-7} & {12}\end{bmatrix}\begin{bmatrix}{24} & {} & {} \\ {-24} & {} & {} \\ {0} & {} & {}\end{bmatrix}\begin{cases}-2 \\ \square \\ \square\end{cases}

The last number we got is the residue of the division, in this case, it is 0. Now we rewrite the polynomial but we subtract 1 to the order of the polynomial:


(x^3-5x^2-2x+24)/(x+2)=x^2-7x+12

User Tovmeod
by
8.6k points

No related questions found

Welcome to QAmmunity.org, where you can ask questions and receive answers from other members of our community.

9.4m questions

12.2m answers

Categories