Looking at the question, if the value of h = 0 is substituted directly into the question, we will obtain an indeterminate form
Method 1
L'Hôpital's Rule can help us calculate a limit that may otherwise be hard or impossible.
So, L’Hospital’s Rule tells us that if we have an indeterminate form 0/0 or
all we need to do is differentiate the numerator and differentiate the denominator and then take the limit.
![\begin{gathered} ((d)/(dx)((2+h)^3-8))/((d)/(dx)(h)) \\ \\ \Rightarrow(3(2+h)^2)/(1) \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/bam8aku6xd1ck0eiwpyat48mx06p22crbb.png)
Then we can now put h = 0
![3(2+0)^2](https://img.qammunity.org/2023/formulas/mathematics/college/l73xix5a1vp7hfrlg4lkjksra75wca4ejw.png)
=> 3 x 4
=> 12
The answer = 12
Method 2
We can expand the numerator and then divide it by the denominator
![\begin{gathered} ((2+h)^3-8)/(h) \\ \\ \frac{8+12h+6h^2+h^3\text{ - 8}}{h} \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/svc5ecjqt44u3wpc5w8n121xhgfvfoarau.png)
![(12h+6h^2+h^3)/(h)](https://img.qammunity.org/2023/formulas/mathematics/college/5885ar585p0gq9czm5i3xe97su16fa2pbl.png)
![12+6h+h^2](https://img.qammunity.org/2023/formulas/mathematics/college/fg0hzqjbsta5u0q2o1zoikp1ijh60vvkeg.png)
Substituting the value of h = 0
gives 12