179k views
4 votes
Given the following matrices, if possible, determine 4A. if not, state “not possible”

Given the following matrices, if possible, determine 4A. if not, state “not possible-example-1
User Mkurz
by
6.0k points

1 Answer

5 votes

Recall that the product of a scalar and a matrix A is a matrix with entries equal to the product of the scalar and the value in that entry matrix A.

Therefore:


4A=4\begin{bmatrix}-3{} & {}-4 & {} \\ {-3} & -5 & {} \\ {6} & {-7} & {}\end{bmatrix}=\begin{bmatrix}-3*4{} & {}-4*4 & {} \\ {-3}*4 & -5*4 & {} \\ {4*6} & {-7}*4 & {}\end{bmatrix}\text{.}

Simplifying the above matrix we get:


4A=\begin{bmatrix}-12{} & {}-16 & {} \\ {-12} & -20 & {} \\ {24} & {-28} & {}\end{bmatrix}\text{.}

Answer:


4A=\begin{bmatrix}-12{} & {}-16 & {} \\ {-12} & -20 & {} \\ {24} & {-28} & {}\end{bmatrix}\text{.}

User Jmena
by
5.7k points