We have the following polynomial:
![4ck^2+10k^2-16ck-40k](https://img.qammunity.org/2023/formulas/mathematics/high-school/duvtae8sxaq3ot9pvgddybyr1b32r8014g.png)
See that 2k is the greatest common factor, then, let's factor it out
![2k(2kc+5k-8c-20)](https://img.qammunity.org/2023/formulas/mathematics/high-school/bpoao82vuhjjemtv3wmnjdb2k8hunex8ac.png)
We can still do some small factors inside the parenthesis, like:
![\begin{gathered} 2kc+5k-8c-20 \\ \\ k(2c+5)-4(2c+5) \\ \\ (2c+5)(k-4) \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/high-school/rkqvwfqkuee0mbla3wb1myoz2o5mhe97ka.png)
Then, inside the parenthesis it's
![2k(2c+5)(k-4)](https://img.qammunity.org/2023/formulas/mathematics/high-school/mefuabke6stys3mxb9hij0g08irnv86kps.png)
Therefore, the expression, completely simplified is
![4ck^2+10k^2−16ck−40k=2k(2c+5)(k-4)](https://img.qammunity.org/2023/formulas/mathematics/high-school/flbva399hascrjpyiv1zhlyrar07wicgr5.png)