The Central Limit Theorem tells us that for a population with any distribution, the distribution of the
sample means approaches a normal distribution as the sample size increases. The procedure in this
section forms the foundation for estimating population parameters and hypothesis testing.
From the given data we have,
Mean = 172 pounds
Standard Deviation = 30 pounds
Probability through the normal distribution is expresses as :
![\begin{gathered} z=(x-\mu)/(\sigma) \\ \text{ where }\mu=\text{ mean \& }\sigma=\text{ Stanadard Deviation} \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/n9db8bvl6axk26hen8vo762ut2aq1tzyor.png)
a)
Probability for weighs over 200 pounds
x = 200
![\begin{gathered} z=(200-172)/(30) \\ z=0.933 \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/sle38kw7b7pndirz0z8addwvyjt7bx5ng0.png)
b) The probability that 30 randomly selected men have an average weight over 200 pounds is expresses as :
![\begin{gathered} z=(x-\mu)/((\sigma)/(n)) \\ \text{ where }\mu=\text{ mean, n = number \& }\sigma=\text{ Stanadard Deviation} \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/6bntofltw4m8l2e3ct4pr7trh0qwpynhcj.png)
So, here n =30
![\begin{gathered} z=\frac{200-172}{\frac{30}{\sqrt[]{30}}} \\ z=(28)/(5.477) \\ z=5.11 \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/bmfd2fdmkhtpxkmb5cz99jp31weuvtmx0a.png)
Answer : z=5.11