Given a function to graph:
![y=2x^2-4x+5](https://img.qammunity.org/2023/formulas/mathematics/college/96tmz1az42dtccu97cv3uhxr4u8bgw8pvb.png)
First, we have to the vertex of the parabola.
We know that the vertex of the parabola is at x = -b/2a. For the given equation, a = 2, b = -4, c = 5. So, the vertex is:
![\begin{gathered} x=(-b)/(2a) \\ x=(-(-4))/(2(2)) \\ x=(4)/(4) \\ x=1 \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/nopd6l32l1co5xn2g1uaxaol6xu1e6rvno.png)
Now, at x = 1, the value of y is:
![\begin{gathered} y=2(1)^2-4(1)+5 \\ y=2-4+5 \\ y=7-4 \\ y=3 \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/8ykxic1s89x3hlkoy398cxkhbne9e03s70.png)
So, the vertex of the given parabola is (1, 3).
The two points to the left of the vertex can be obtained at x = 0, -1.
At x = 0.
![\begin{gathered} y=2(0)^2-4(0)+5 \\ y=5 \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/subu6ereyhh9c6izd450lx6iucd2ej5i28.png)
At x = -1.
![\begin{gathered} y=2(-1)^2-4(-1)+5 \\ =2+4+5 \\ =11 \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/426w9s8jka1xuwkrpkxz3nnfjp6ukr670v.png)
So, the two points to the left of the vertex are (0, 5) and (-1, 11).
The two points to the right of the vertex can be obtained at x = 2 and x = 3.
At x = 2.
![\begin{gathered} y=2(2)^2-4(2)+5 \\ =8-8+5 \\ =5 \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/q8ba1cy1uv7fy5icsb0c26xtv2zrxypt09.png)
At x = 3.
![\begin{gathered} y=2(3)^2-4(3)+5 \\ y=18-12+5 \\ y=11 \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/622l2oa0q2f7pi2id4msrx0uv3zw9wipfi.png)
So, the two points to the right of the vertex are (2, 5) and (3, 11).
Plot these points on the graph to get the graph as follows: