220k views
5 votes
A population grows according to an exponential growth model the initial population is 13 and the grows by 6% each yearFind an explicit formula for the population growth use that formula to evaluate the population after seven yearsRound your answer to two decimal places

A population grows according to an exponential growth model the initial population-example-1
User Mot
by
8.2k points

1 Answer

0 votes

The initial population given is


=13

The percentage growth rate is


\begin{gathered} r=6^{} \\ r=(6)/(100)=0.06 \end{gathered}

The Exponential function is given as


\begin{gathered} y=ab^x \\ \text{where,} \\ a=\text{initial growth}=13 \\ b=\text{growth rate=(1+r)} \\ x=Number\text{ of years=11} \end{gathered}

By substituting the values, we will have the exponential formula to be


\begin{gathered} y=ab^x \\ y=a(1+r)^x \\ y=a(1+0.06)^x \\ y=a(1.06)^x \end{gathered}

By substituting the values of a and x in the formula above, we will have


\begin{gathered} y=a(1.06)^x \\ y=13(1.06)^(11) \\ y=13*1.898298558 \\ y=24.67788126 \\ y\approx(2\text{ d.p)} \\ y\approx24.68 \end{gathered}

Therefore,

The final answer is = 24.68

User Corban
by
8.4k points

No related questions found

Welcome to QAmmunity.org, where you can ask questions and receive answers from other members of our community.

9.4m questions

12.2m answers

Categories