104k views
5 votes
a. pi/3 b. pi/2c. 2pi/3d. 3pi/2 These are 4 options but there can be more than 2 or 3 correct answers.Find the solution of each equation the interval

a. pi/3 b. pi/2c. 2pi/3d. 3pi/2 These are 4 options but there can be more than 2 or-example-1
User CGriffin
by
2.8k points

1 Answer

7 votes

\sin x\cdot\cos x-\frac{\sqrt[]{3}}{2}\cos x=0
\cos x(\sin x-\frac{\sqrt[]{3}}{2})=0
\begin{gathered} \cos x=0 \\ x=(\pi)/(2),(3\pi)/(2) \end{gathered}
\begin{gathered} \sin x-\frac{\sqrt[]{3}}{2}=0 \\ \sin x=\frac{\sqrt[]{3}}{2} \\ x=(\pi)/(3) \end{gathered}

so the answer is pi/2, 3pi/2, and pi/3