46.2k views
2 votes
Simplify each expression
9 \sqrt{2(4 √(6)) }

1 Answer

3 votes

The expression to simplify is:


9\sqrt[]{2}(4\sqrt[]{6})

When we are multiplying two racial expressions, we multiply the constants together and the square roots together. So, the next step is:


\begin{gathered} 9\sqrt[]{2}(4\sqrt[]{6}) \\ =(9*4)(\sqrt[]{2}*\sqrt[]{6}) \\ =36(\sqrt[]{2}*\sqrt[]{6}) \end{gathered}

Now, we an use the property


\sqrt[]{a}*\sqrt[]{b}=\sqrt[]{a* b}

to simplify it further:


\begin{gathered} 36(\sqrt[]{2}*\sqrt[]{6}) \\ =36(\sqrt[]{2*6}) \\ =36\sqrt[]{12} \end{gathered}

We can break apart the square root using the property:


\sqrt[]{ab}=\sqrt[]{a}\sqrt[]{b}

So, we have:


\begin{gathered} 36\sqrt[]{12} \\ =36\sqrt[]{2}\sqrt[]{2}\sqrt[]{3} \end{gathered}

For the final simplification, we use the property,


\sqrt[]{a}\sqrt[]{a}=a

The final answer is:


\begin{gathered} 36\sqrt[]{2}\sqrt[]{2}\sqrt[]{3} \\ =36(2)\sqrt[]{3} \\ =72\sqrt[]{3} \end{gathered}Answer
72\sqrt[]{3}

User Jaumzera
by
9.2k points

No related questions found

Welcome to QAmmunity.org, where you can ask questions and receive answers from other members of our community.

9.4m questions

12.2m answers

Categories