We will solve this in steps to understand better! :)
Solution :
We have
here a ≠ 0
Step 1 : Subtract 'c' from both sides of this equation
![\begin{gathered} \implies \sf a {x}^(2) + bx + c - c = - c \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/high-school/9mg79t24a851zjysr0711wwgkwyv0mufam.png)
![\begin{gathered} \implies \sf a {x}^(2) + bx= - c \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/high-school/uagez4v5qncns9ukobpp94yxm2u5ubnv6x.png)
Step 2 : Dividing both side by coefficient of x² i.e 'a' [why? because we want the coefficient of x² as 1]
![\begin{gathered} \implies \sf \frac{ a {x}^(2)}{a} + (bx)/(a) = - (c)/(a) \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/high-school/sdanqybeu1hg2wjsvt767diyyk98c5ajxz.png)
![\begin{gathered} \implies \sf {x}^(2) + (bx)/(a) = - (c)/(a) \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/high-school/gc9ba32wy6x4iyr1yowrladnez4wc0z1y0.png)
Step 3 : Adding
i.e,
![\begin{gathered}{ \bigg((1)/(2) * (b)/(a) \bigg)}^(2) \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/high-school/5ggy384td8tnjs83ev5epfg910cj25ze1v.png)
to both sides
![\begin{gathered} \implies \sf {x}^(2) + (bx)/(a) +{ \bigg( (b)/(2a) \bigg)}^(2) = - (c)/(a) +{ \bigg( (b)/(2a) \bigg)}^(2) \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/high-school/jmgazknbo21jiadrpoyrgapzvoxve05yyl.png)
Step 4 : From the left side of equation an identity is formed i.e (a + b)² which is equal to a² + 2ab + b²
![\begin{gathered} \implies \sf { \bigg( x + (b)/(2a) \bigg)}^(2) = - (c)/(a) +{ \bigg( (b)/(2a) \bigg)}^(2) \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/high-school/o1ebnrizlvewynh0q4rogml6ccq5f44vc0.png)
Note : If we expand
it will again form
Step 5 : Solving!
![\begin{gathered} \implies \sf { \bigg( x + (b)/(2a) \bigg)}^(2) = - (c)/(a) + \frac{ {b}^(2) }{4 {a}^(2) } \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/high-school/rsv2vnp85y0226v82wokowvynpzxq1y81p.png)
![\begin{gathered} \implies \sf { \bigg( x + (b)/(2a) \bigg)}^(2) = \frac{ {b}^(2) }{4 {a}^(2) } - (c)/(a) \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/high-school/yaljvsu5q8wd54thyfuqzsg2f86sxxgrip.png)
Here, [On right side of equation for LCM]
4a² = 4×a×a
a = a
Hence LCM = 4a²
![\begin{gathered} \implies \sf { \bigg( x + (b)/(2a) \bigg)}^(2) = \frac{ {b }^(2) - 4ac }{ 4{a}^(2) } \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/high-school/cqmbtaoryzjc9o74zy7sbtpn2vkd7z4e57.png)
![\begin{gathered} \implies \sf { \bigg( x + (b)/(2a) \bigg)}^(2) = \frac{ {b }^(2) - 4ac }{ {(2a)}^(2) } \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/high-school/w0ru0etx24ihw45t48v6l1u9aa4woulzo6.png)
![\begin{gathered} \implies \sf x + (b)/(2a) = \pm \sqrt{\frac{ {b }^(2) - 4ac }{ {(2a)}^(2) }} \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/high-school/q4dl9sy5sexb1rfe81nz5lxx1hfs1ftm00.png)
![\begin{gathered} \implies \sf x = - (b)/(2a) \pm \sqrt{\frac{ {b }^(2) - 4ac }{ {(2a)}^(2) }} \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/high-school/qm4v8r4dayzixqog91lbw7o4sec3dd7ltm.png)
![\begin{gathered} \implies \sf x = - (b)/(2a) \pm {\frac{\sqrt{ {b }^(2) - 4ac }}{ 2a }} \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/high-school/e87w0rdi4v0q5ede3k5hmnh26l96r0skcg.png)
![\begin{gathered} \implies \boxed{ \sf x = {\frac{ - b \pm \sqrt{ {b }^(2) - 4ac }}{ 2a }}} \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/high-school/r27gpvwy9xrpy0l41ueghjmxhumdn993h8.png)
Our quadratic formula is formed!
Therefore,
The roots of general quadratic equation are
![\begin{gathered} \sf \alpha = {\frac{ - b + \sqrt{ {b }^(2) - 4ac }}{ 2a }} \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/high-school/gq87r1i16akj9gjwda2zl93du169i593ob.png)
![\begin{gathered} \sf \beta = {\frac{ - b - \sqrt{ {b }^(2) - 4ac }}{ 2a }} \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/high-school/yzkjynbwm1au6tsdormt2rt8t1qhgucgf4.png)
Sum of roots
![\alpha + \beta](https://img.qammunity.org/2023/formulas/mathematics/high-school/u80oma9b78tbtd5ns8g3ewwtoo8ctr7oux.png)
![\begin{gathered} \implies \sf {\frac{ - b + \sqrt{ {b }^(2) - 4ac }}{ 2a }} + {\frac{ - b - \sqrt{ {b }^(2) - 4ac }}{ 2a }} \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/high-school/bzt8cug62sjfgqv7dhs4gt8vxwae80ervh.png)
![\begin{gathered} \implies \sf {\frac{- b \: \cancel{+ \sqrt{ {b }^(2) - 4ac }} - b \: \cancel{- \sqrt{ {b }^(2) - 4ac }}}{ 2a }} \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/high-school/3alwr1s4u6ze0lt0lmbub2oixvnmzzs9y5.png)
![\begin{gathered} \implies \sf {(- b - b )/( 2a )} \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/high-school/gjytnrmk0e3oypsc2q6sxos9zxp6xddb6p.png)
![\begin{gathered} \implies \sf {( - 2b )/( 2a )} \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/high-school/10muj65syqt8s2y11hsiqyxocw52nel64u.png)
![\begin{gathered} \implies \boxed{ \sf {( - b )/( a )} }\end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/high-school/a10voz0bkach76c5spmyhmc69kjslednog.png)
So, the sum of roots = -b/a
Now,
Product of roots =
![\alpha \beta](https://img.qammunity.org/2023/formulas/mathematics/college/wzazrking0rr6zsyldro6yzr9c8mqwicmo.png)
![\begin{gathered} \implies \sf \bigg( {\frac{ - b + \sqrt{ {b }^(2) - 4ac }}{ 2a }} \bigg) \bigg({\frac{ - b - \sqrt{ {b }^(2) - 4ac }}{ 2a }} \bigg) \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/high-school/mwnaae6atntz3suon54tyiw0yxb4l2m3k3.png)
![\begin{gathered} \implies \sf \bigg( \frac{ \sf{\overbrace{{ (- b)}}^{{a}}\: + \: \overbrace{{\sqrt{ {b }^(2) - 4ac}}}^{{b}} }}{ 2a } \bigg) \bigg({\frac{ { \overbrace{{ (- b)}}^{{a}}\: - \: \overbrace{{\sqrt{ {b }^(2) - 4ac}}}^{{b}}}}{ 2a }} \bigg) \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/high-school/msksyyazis2y0jkvv2cvs2mg8jsiftavr3.png)
Using (a + b) (a - b) = a² - b²
![\begin{gathered} \implies \sf {\frac{ { (- b)}^(2) - {( \sqrt{ {b }^(2) - 4ac })}^(2) }{ 4 {a}^(2) }} \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/high-school/cgau64tqk2rvpd1ddx3kfers8yf87clnv8.png)
![\begin{gathered} \implies \sf {\frac{ { b}^(2) - ( {b}^(2) - 4ac) }{ 4 {a}^(2) }} \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/high-school/whchudrjkwc34sybd4yiwjfimxzuabb3yd.png)
![\begin{gathered} \implies \sf {\frac{ { b}^(2) - {b}^(2) + 4ac }{ 4 {a}^(2) }} \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/high-school/kkwycpv03ped5stujaq5nuu4m3p2x1xwaj.png)
![\begin{gathered} \implies \sf {\frac{ 4ac }{ 4 {a}^(2) }} \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/high-school/dhf8p1qetgs6tw06hmk9t9d101y7pfrgtk.png)
![\begin{gathered} \implies \boxed{ \sf {( c )/( a)}} \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/high-school/pd1qgluk1b8ez9ksbj6fp23lnqlby7ylf4.png)
So, Product of roots = c/a
We are done with our solution! :D
Note :
Move from left to right to see the full answer.