The given function is
![f(x)=2x^2+kx+19](https://img.qammunity.org/2023/formulas/mathematics/college/tr0vcgjbvku6xoc4a8l2rsk9ogxq6ocoxm.png)
When we divide f by (x - 4) the remainder is 35
That means If we substitute x by 4, the answer should be 35
Then we have to equate x - 4 by 0 first, to get the value of x = 4
Then substitute x by 4 and equate the answer by 35
![\begin{gathered} x-4=0 \\ x-4+4=0+4 \\ x=4 \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/qhw36oap2h6bb7ciqh8t345dhyia1af3kg.png)
![\begin{gathered} f(4)=35 \\ \\ 2(4)^2+k(4)+19=35 \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/grjgu4tokncrc5o2jbsbewalbouiljg0fe.png)
Solve the equation
![\begin{gathered} 2(16)+4k+19=35 \\ \\ 32+4k+19=35 \\ \\ 51+4k=35 \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/e4yu678d91q7hr66p9tmajaao0jc9yphcg.png)
Subtract 51 from both sides
![\begin{gathered} 51-51+4k=35-51 \\ \\ 4k=-16 \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/cekr18b6qnbbzukryc7v8qpg4mxeqyuuzi.png)
Divide both sides by 4
![\begin{gathered} (4k)/(4)=(-16)/(4) \\ \\ k=-4 \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/ab1380bcg6hf45oa9vsnhxw0n3hga2507z.png)
The value of k is -4