Given that the predicted value is 227 while the actual value is 250.
1.
The difference is calculated as,
![\begin{gathered} \text{ Difference }=\text{ Actual Value}-\text{ Predicted Value} \\ \text{ Difference }=250-227 \\ \text{ Difference }=23 \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/ts9t3valrjf9gk6g3sskyw8i3qpgqlqfn8.png)
Thus, the difference is 23.
2.
Consider the equation,
![\text{ Difference}=\text{ percent error}\cdot\text{ Actual Value}](https://img.qammunity.org/2023/formulas/mathematics/college/7deruuj8r22311n431hiemt8i21f4hw8gr.png)
Substitute the values,
![23=p\cdot250](https://img.qammunity.org/2023/formulas/mathematics/college/9h1g3uhbkynhle65jmtermxltay766q1iu.png)
This is the required equation.
3.
Solve the equation obtained above for the variable 'p' as,
![\begin{gathered} p=(23)/(250) \\ p=0.092 \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/dwbs6ciu92pxufiokotvgpx0puvlfmlg1t.png)
Thus, the value of 'p' is obtained as 0.092.
4.
The value of 'p' in percentage can be obtained as,
![\begin{gathered} p(\text{percent})=0.092\cdot100 \\ p(\text{percent})=9.2 \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/m2lhetwmizqwe15i8jqz6uojb7omluf7n8.png)
Thus, the value of percentage error is 9.2%.