![\begin{gathered} m=(1)/(2) \\ b=-2 \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/qkh0go1z1e6rsobgir35xkuop8cd8onuey.png)
The equation of the line in the slope-intercept form is given by:
![\begin{gathered} y(x)=mx+b \\ so\colon \\ y(x)=(1)/(2)x-2 \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/l0qkgkchjds2m9g4z3nslqyh2peijwditn.png)
The graph of this line is given by:
----
![\begin{gathered} y=mx+b \\ (-4,0) \\ (0,3) \\ m=(3-0)/(0-(-4))=(3)/(4) \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/ktch048nj9vnqu73pjo2x570lptd5w6yoa.png)
so, using the point slope equation:
![\begin{gathered} y-(0)=(3)/(4)(x-(-4)) \\ y=(3)/(4)(x+4) \\ y=(3)/(4)x+3 \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/8rsxit1p5cdopusm1qzlx8iaprr09n89z3.png)
-----------------------------------
Let:
![\begin{gathered} y=3x+2 \\ m1=3 \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/7pxh9na46qa434vjrdj5v58m7804s5srz5.png)
If 2 lines are parallel, then:
![m1=m2](https://img.qammunity.org/2023/formulas/mathematics/college/nfdvp7mtz4q3lr2oldef2azfj8vxpbv57i.png)
where m2 is the slope of the other line, so:
![\begin{gathered} m2=3 \\ let\colon \\ (x1,y1)=(1,3) \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/emxhmqy11xzo2sm2fniva0r3tuxni1dk3u.png)
Using the point-slope equation:
![\begin{gathered} y-y1=m(x-x1) \\ y-3=3(x-1) \\ y-3=3x-3 \\ y=3x-3+3 \\ y=3x \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/cfdkag8seqqgy6rvi689irsxap9z89u1fw.png)