If we choose a=20, b=15 and c=11 ans substitute these values into the given formula, we have
![\cos O=(15^2+11^2-20^2)/(2(11)(15))](https://img.qammunity.org/2023/formulas/mathematics/college/ynxj52z22t5la6lzm17e3pl1kub5rx48ua.png)
which gives
![\cos O=(346-400)/(330)](https://img.qammunity.org/2023/formulas/mathematics/college/rllz2470a36eyeozm0g3z92rjf340yqg3f.png)
then
![\begin{gathered} \cos O=-(54)/(330) \\ \cos O=-0.16363 \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/tnjiyd6ud30jdwhfntvnofp24oaoy9zepz.png)
which gives
![\begin{gathered} \angle O=\cos ^(-1)(-0.16363) \\ \angle O=99.418 \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/y0xgu7tp73w48puxejo61do6953puc5nqf.png)
Once we have one angle, we can use the law of sines as follows,
![(\sin O)/(20)=(\sin D)/(15)](https://img.qammunity.org/2023/formulas/mathematics/college/c055r7pbowfd4ak0xn9o46joszzfv5y794.png)
which gives
![\begin{gathered} (\sin 99.418)/(20)=(\sin D)/(15) \\ \text{then} \\ \sin D=15*(\sin99.418)/(20) \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/amyj590oq3fh9f1aq61qwd35t9qmnx0r0l.png)
so, angle D is
![\begin{gathered} \sin D=0.73989 \\ \angle D=\sin ^(-1)(0.73989) \\ \angle D=47.722 \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/k54dgsxrwt3o9tgtn3ds4bxqf6n7sjiqam.png)
Finally, since the interior angles of any triangle add up to 180, we have
![\begin{gathered} \angle T+\angle D+\angle O=180 \\ \angle T+47.722+99.418=180 \\ \angle T+147.14=180 \\ \angle T=32.86 \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/kyamqxehjujmxnmoca7ovanfkjyb4q7uvv.png)
In summary, the answers are:
![\begin{gathered} \angle D=47.722 \\ \angle O=99.418 \\ \angle T=32.86 \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/xl5cvbyvnh8h1cjswdbnz2xsjfn5tzmmu4.png)