Answer:
14.3 ft
Step-by-step explanation:
We can represent the situation as:
Now, we can relate the measure of the angle, the height x, and the distance 10 ft using the trigonometric function tangent as:
![\begin{gathered} \tan 55=(Opposite)/(Adjacent) \\ \tan 55=(x)/(10) \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/mskjkiajswv781cd5o9sn9vg7y7w61gr42.png)
So, solving for x, we get:
![\begin{gathered} 10\cdot\tan 55=10\cdot(x)/(10) \\ 10\cdot\tan 55=x \\ 10\cdot1.43=x \\ 14.3\text{ ft = x} \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/tt9n88baa2maww20byx2v0wqpwtqf1ri9k.png)
Therefore, the height of the nest to the nearest tenth is 14.3 ft.