Given:
Mass of planet, m = 4.15 x 10²⁴ kg.
Period, T = 14100 s
Let's find the radius.
To find the radius, apply the formula from Kepler's Third aw:
![\begin{gathered} (T^2)/(R^3)=(4\pi^2)/(GM) \\ \\ \end{gathered}](https://img.qammunity.org/2023/formulas/physics/high-school/8e94mr5dd6dd12czl0f2utgc0ilx0mimpl.png)
Where R is the radius.
Rewrite the formula for r:
![R=\sqrt[3]{(GM*T^2)/(4\pi^2)}](https://img.qammunity.org/2023/formulas/physics/high-school/d08b6dzmfgau9nfntkbsq3pvzsiunddlzj.png)
Where:
G is gravitational constant = 6.67 x 10⁻¹¹ m3 kg-1 s-2
M is the mass = 4.15 x 10²⁴ kg
T is the period = 14100 s
π = 3.54
Plug in values and solve for R;
![\begin{gathered} R=\sqrt[3]{(6.67*10^(-11)*4.15*10^(24)*14100^2)/(4\pi^2)} \\ \\ R=\sqrt[3]{(5.503*10^(22))/(39.4784)} \\ \\ \end{gathered}](https://img.qammunity.org/2023/formulas/physics/high-school/uux836qhmxlebkb0wapbp1db1rklr2j1fc.png)
Solving further:
![\begin{gathered} R=\sqrt[3]{1.394*10^(21)} \\ \\ R=11170796.49\approx1.12*10^7\text{ m} \end{gathered}](https://img.qammunity.org/2023/formulas/physics/high-school/zdisu75fkk0uhwqvwk0x9myu6fui8lvjex.png)
Therefore, the orbital radius will be 1.12 x 10⁷ meters.
ANSWER:
1.12 x 10⁷ m