Given:
The function is
![y=cos2x-5cosx](https://img.qammunity.org/2023/formulas/mathematics/college/gc7w5jfjfpg6ec2eq55nqp9vcgabmr0bbq.png)
Required:
To find the points at which the tangent equations to the graph of the following functions are parallel to the x-axis.
Step-by-step explanation:
Differentiate the given function.
![\begin{gathered} (dy)/(dx)=2(-sin2x)-5(-sinx) \\ (dy)/(dx)=-2sin2x+5sinx \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/76tylod2e2zzxpe9c91jydpuw49c9d5xrv.png)
Given that tangent to the curve is parallel to the x-axis.
So the slope of the tangent = Slope of X-axis
![\begin{gathered} (dy)/(dx)=0 \\ 5sinx-2sin2x=0 \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/cslor8mecee22u22xevrswep8csb14cpnx.png)
Use the identity
![sin2x=2sinxcosx](https://img.qammunity.org/2023/formulas/mathematics/college/f5nhaudi3itcnmt8cgduqdnlipr9uhxtco.png)
Now
![\begin{gathered} 5sinx-2(2sinxcosx)=0 \\ 5sinx-4sinxcosx=0 \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/1joqtd4mhv1oahztabu3eyrmm9kcqkty4f.png)
Take out common sinx
![sinx(5-4cosx)=0](https://img.qammunity.org/2023/formulas/mathematics/college/v899hjfkh0bgm9g0ll9gkoivdqyyio1l28.png)
![undefined]()