7 bills of $5 and 20 bills of $10
Step-by-step explanation
Step 1
Let
Malick has $235=total = 235
total=235
number of bill $5= x
number of bill $10=y
He has one less than three times as many $10 bills than $5 bills=
3x=y+1
![3x=y+1\text{ Equation (1)}](https://img.qammunity.org/2023/formulas/mathematics/high-school/tmxydtwj0mt68uatgeqnhjevj2gfeq4fea.png)
Step 2
the total is 235, so
total for $ 5 bills= 5* number of bills $5=5x
total for $ 10 bills= 10* number of bills $10=10x
![5x+10y=235\text{ Equation(2)}](https://img.qammunity.org/2023/formulas/mathematics/high-school/coib3psg1ge3q3hyhrdjsvkr9t4h8omh9n.png)
Step 2
using equation (1I and (2) solve for x and y
![\begin{gathered} 3x=y+1 \\ 5x+10y=235 \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/high-school/pe6w8ma1cmre7b2ngdgt9wlwggr2fklg75.png)
isolate, y in equation (1)
![\begin{gathered} 3x=y+1 \\ \text{divide each side by 3} \\ (3x)/(3)=(y)/(3)+(1)/(3) \\ x=(y)/(3)+(1)/(3) \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/high-school/ntujummao138rsjx0v02w7d31sl0l2sp9e.png)
replace the value of x in equation (2)
![\begin{gathered} 5x+10y=235 \\ 5((y)/(3)+(1)/(3))+10y=235 \\ (5y)/(3)+(5)/(3)+10y=235 \\ y((5)/(3)+\frac{10}{})=235-(5)/(3) \\ \\ y((35)/(3))=233.33 \\ y=(233.33\cdot3)/(35) \\ y=20 \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/high-school/cgp2yj0rox8z4b25sq9yudrsrtqk3nhjsp.png)
replace the value of y in equation (1) to fin d x
![\begin{gathered} 3x=y+1 \\ 3x=20+1 \\ 3x=21 \\ \text{divide by 3} \\ (3x)/(3)=(21)/(3) \\ x=7 \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/high-school/io7js2c59e7uotcggg48chhvpm6j2apgtw.png)
so, the answer is
7 bills of $5 and 20 bills of $10