SOLUTION:
Step 1:
In this question, we are given the following:
A ball has a volume of 86π cubic centimeters.
What is the diameter of the ball? Show all work and round to the nearest tenth.
Step 2:
The details of the solution are as follows:
![\begin{gathered} Let\text{ the ball take the shape of a sphere} \\ Hence,\text{ the volume of the sphere =}(4)/(3)\pi r^3 \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/6nxequkylt154jmtitgiill11di3dpi137.png)
![\begin{gathered} Making\text{ the radius, the subject of the formulae:} \\ r^3=(V)/((4\pi)/(3)) \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/3huxz90yblzpzqjr4ewbg4h76ag3nawu87.png)
![r^3\text{ = V x }(3)/(4\pi)](https://img.qammunity.org/2023/formulas/mathematics/college/5rbpgoppd3q63hmlz7jw7gs277bymvb4lw.png)
![r^3\text{ =}(3V)/(4\pi)](https://img.qammunity.org/2023/formulas/mathematics/college/24nhl9vegcep9uf2w8jyuwmvf2aufm3zdm.png)
![where\text{ V = 86}\pi\text{ cm}^3](https://img.qammunity.org/2023/formulas/mathematics/college/tuy8i3wmvi0psta7ma9u8j5l3uixas61l1.png)
![r^3=\frac{3\text{ x 86}\pi}{4\pi}=\text{ }(258)/(4)=64.5](https://img.qammunity.org/2023/formulas/mathematics/college/4xn440vbsheo9l1wb1pcqo49hxqaxj48zx.png)
![\begin{gathered} r\text{ =}\sqrt[3]{64.\text{ 5}} \\ \text{r = 4.010 cm} \\ Then\text{ the diameter = 2 x 4.010 cm = 8.02 cm }\approx\text{ 8. 0 cm } \\ \text{\lparen correct to the nearest tenth \rparen} \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/v67lx128fvupy8xu51teqt7cqk1z4is3ai.png)
CONCLUSION:
The final answer is:
![\begin{gathered} The\text{ diameter of the ball = 8. 0 cm } \\ (\text{ correct to the nearest tenth\rparen} \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/lzmt2pvs3b8ia2xu5t0rfmitemvvbd46xr.png)