106k views
4 votes
Is sais use induction to prove each conjecture is true for all positive n integers. what do I do?

Is sais use induction to prove each conjecture is true for all positive n integers-example-1
User Benissimo
by
6.0k points

1 Answer

2 votes

(6n+2)=n(3n+5)

To prove if it is true for positive n intergers for induction method:

1. Prove For n=1


\begin{gathered} (6(1)+2)=1(3(1)+5) \\ 6+2=3+5 \\ 8=8 \end{gathered}

For n=1 it is true

2. Assume that the statement is true for n=k.

It is true for n=k

3. Prove For n=k+1


\begin{gathered} (6(k+1)+2)=(k+1)(3(k+1)+5) \\ 6k+6+2=(k+1)(3k+3+5) \\ 6k+8=(k+1)(3k+8) \\ 6k+8=3k^2+8k+3k+8 \\ 6k+8=3k^2+11k+8 \\ 6k+8\\e3k^2+11k+8 \\ \end{gathered}

As the conjeture is not true for n=k+1

The conjeture is not true for all positive intergers

User Marcelog
by
5.6k points
Welcome to QAmmunity.org, where you can ask questions and receive answers from other members of our community.