Answer:
Explanation:
As RS is a straight line sin ∠RUT = sin ∠SUT
line UT bisects ∠RTS
Let θ be ∠UTR and ∠UTS
Law of sines
Left side triangle
3x/sinθ = 40/sinRUT
sinRUT = 40sinθ / 3x
Right side triangle
(x + 2) / sinθ = 16 / sinSUT
(x + 2) / sinθ = 16 / (40sinθ / 3x)
(x + 2)(40sinθ / 3x) = 16sinθ
(x + 2)(40sinθ) = 48xsinθ
40xsinθ + 80sinθ = 48xsinθ
40x + 80 = 48x
80 = 8x
x = 10