210k views
2 votes
Find the real zeros of F then use the real zeros to factor f.

Find the real zeros of F then use the real zeros to factor f.-example-1
User UpaJah
by
7.8k points

1 Answer

1 vote

Solution:

Given:


f(x)=x^4+10x^3-15x^2-40x+44

The zeros of the function are as follows;

Using the theorem, if f(a) = 0, then x = a is a root or zero.

Hence;


\begin{gathered} f(1)=1^4+10(1^3)-15(1^2)-40(1)+44 \\ f(1)=1+10-15-41+44 \\ f(1)=0 \\ \\ Hence,\text{ } \\ x=1\text{ is a zero} \end{gathered}
\begin{gathered} f(2)=2^4+10(2^3)-15(2^2)-40(2)+44 \\ f(2)=16+80-60-80+44 \\ f(2)=0 \\ \\ Hence,\text{ } \\ x=2\text{ is a zero} \end{gathered}

Trying other numbers, it follows also that;


\begin{gathered} f(-2)=(-2)^4+10(-2^3)-15(-2^2)-40(-2)+44 \\ f(-2)=16-80-60+80+44 \\ f(-2)=0 \\ \\ Hence,\text{ } \\ x=-2\text{ is a zero} \end{gathered}

The last root is;


\begin{gathered} f(-11)=(-11)^4+10(-11^3)-15(-11^2)-40(-11)+44 \\ f(-11)=14641-13310-1815+440+44 \\ f(-11)=0 \\ \\ Hence,\text{ } \\ x=-11\text{ is a zero} \end{gathered}

Therefore, the zeros are;

x = 1

x = 2

x = -2

x = -11

Using the factor theorem, if x = a is a zero, then (x-a) is a factor.

Thus,


\begin{gathered} x=1,(x-1)\text{ is a factor} \\ x=2,(x-2)\text{ is a factor} \\ x=-2,(x+2)\text{ is a factor} \\ x=-11,(x+11)\text{ is a factor} \end{gathered}

Hence, the polynomial can be factored as;


x^4+10x^3-15x^2-40x+44=\left(x-1\right)\left(x+11\right)\left(x+2\right)\left(x-2\right)

User Tony Kiernan
by
8.9k points

No related questions found

Welcome to QAmmunity.org, where you can ask questions and receive answers from other members of our community.

9.4m questions

12.2m answers

Categories