101k views
3 votes
Convert the given from of the function into the other two forms

Convert the given from of the function into the other two forms-example-1
User Miorel
by
4.4k points

1 Answer

4 votes

Step 1: Standard form to vertex form of rows 1 and 2:


\begin{gathered} S\tan dard\text{ form} \\ y=ax^2\text{ + bx + c} \\ \text{Vertex form } \\ y\text{ = }a(x-h)^2\text{ + k} \end{gathered}

Standard form of row 1 to vertex form


\begin{gathered} y=x^2\text{ - 2x - 3} \\ y=x^2-2x+1^2-3-1^2 \\ \text{y = (x -1 )}^2\text{ - 3 - 1} \\ y=(x-1)^2\text{ - }4 \end{gathered}

Intercept form of row 3 to vertex form.


\begin{gathered} y\text{ = (}x\text{ + 2)(x - 3)} \\ y=x^2\text{ - 3x + 2x - 6} \\ y=x^2\text{ - x - 6} \\ y=x^2\text{ - x + (}(1)/(2))^2\text{ - 6 - (}(1)/(2))^2 \\ y\text{ = (x - }(1)/(2))^2\text{ - 6 - }(1)/(4) \\ y\text{ = (x - }(1)/(2))^2\text{ - }(25)/(4) \end{gathered}

Standard form to intercept form row 1


\begin{gathered} y=x^2\text{ - 2x - 3} \\ \text{method: factorize} \\ y=x^2\text{ - 3x + x - 3} \\ y\text{ = x(x - 3) +1( x - 3)} \\ y\text{ = (x + 1)(x - 3)} \end{gathered}

Intercept form to standard form row 3


\begin{gathered} y\text{ = (x + 2)(x - 3)} \\ y\text{ = x(x - 3) + 2(x - 3) by distribution} \\ y=x^2\text{ - 3x + 2x - 6} \\ y=x^2\text{ - x - 6} \end{gathered}

Vertice form to intercept fomr

User Virgil Dupras
by
4.3k points