To solve the exercise, we can first find the slope of the line that passes through the given points using the following formula:
![\begin{gathered} m=(y_(2)-y_(1))/(x_(2)-x_(1)) \\ \text{ Where} \\ (x_1,y_1)\text{ and }(x_2,y_2)\text{ are two points through which the line passes} \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/stwwpaeme7rvidc6vwyj8frce7gdnbjr69.png)
So, in this case, we have:
![\begin{gathered} (x_1,y_1)=(-2,-1) \\ (x_2,y_2)=(-4,-3) \\ m=(y_(2)-y_(1))/(x_(2)-x_(1)) \\ m=(-3-(-1))/(-4-(-2)) \\ m=(-3+1)/(-4+2) \\ m=(-2)/(-2) \\ m=1 \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/gvfgwa3mvdt5zb8k4b7gjk5fb6moxnv9zt.png)
Now, we can use the point-slope formula, and we solve for y:
![y-y_1=m(x-x_1)\Rightarrow\text{ Point-slope formula}](https://img.qammunity.org/2023/formulas/mathematics/college/5ipw47iqsc7zkaiecqhzs36ibxx6dbxl58.png)
![\begin{gathered} y-(-1)=1(x-(-2)) \\ y+1=x+2 \\ \text{ Subtract 1 from both sides of the equation} \\ y+1-1=x+2-1 \\ y=x+1 \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/l18vpgope0ch4seu93ws5q40l2jb6quejl.png)
Therefore, the equation of the line that passes through the points (-2, -1) and (-4, -3) in its slope-intercept form is:
![$$\boldsymbol{y=x+1}$$](https://img.qammunity.org/2023/formulas/mathematics/college/2hc4ihu7et615cirt1002gnzq0te1vjzbm.png)