![\begin{gathered} A)P(t)=30(1+0.088)^t\text{( in millions)} \\ B)P(20)=163.33\text{ Million people} \\ C)163.33\text{ Million people} \\ D)8.21years \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/f6hk1gvunbd4yeaj7g8ixtrxhkbpg1menm.png)
Step-by-step explanation
you can model growth by a constant percent increase with the following formula:
![\begin{gathered} P(t)=A(1+r)^t \\ \text{where} \\ P(t)\text{ is the final amount} \\ A\text{ is }the\text{ initial amount} \\ r\text{ is the rate ( in decimal)} \\ t\text{ is the time ( years)} \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/yxsgcwtlr14gmhgvwmu2cra99kfg9pei9a.png)
so
Step 1
make the model.
A)Let
![\begin{gathered} P=70\text{ million} \\ \text{time}=\text{ 1990-180=10 years} \\ A=30\text{millones } \\ so \\ 70=30(1+r)^(10)\rightarrow equation \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/bcj4kllabe7j7apn8l225g5mqwz26wjaut.png)
now, we need to solve for r
![\begin{gathered} 70=30(1+r)^(10)\rightarrow equation \\ (70)/(30)=(1+r)^(10) \\ ((70)/(30))^{(1)/(10)}=((1+r)^(10))^{(1)/(10)} \\ 1.088=1+r \\ \text{subtract 1 in both sides} \\ 1.088-1=1+r-1=0.0884229198 \\ r=0.0884229198 \\ or \\ r=8.8\text{ \%} \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/h8qqt0b6emvdqkli8ofxj05fc8uiamovas.png)
c) now, we can complete the model
![P(t)=30(1+0.088)^t](https://img.qammunity.org/2023/formulas/mathematics/college/xk6uciax0dbanc2bjltfx300mp819yw6mt.png)
Step 2
Whar population do you predict for the year 2000?
Let
![\begin{gathered} \text{time}=\text{ 2000-1980=20 years} \\ t=20 \\ P=30 \\ r=\text{0}.088 \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/1fb79wg0yt2wsgjfyg3p5k2g672u0e5cjx.png)
replace
![\begin{gathered} P(20)=30(1+0.088)^(20) \\ P(20)=30(1+0.088)^(20) \\ P(20)=30(1+0.088)^(20) \\ P(20)=163.33\text{ Million people} \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/ns58yld4jgnagnoa26spxg8vmsacj4gres.png)
Step 3
D) What is the doubling time?
Doubling time =____ years
to solve this , we need to find the time , when population is double than currently, so
![\begin{gathered} \text{Double population= }2\cdot300\text{ milliones} \\ \text{Double population=}600\text{ Million} \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/9vgli61ops2iddu4jihxltmcsmu8dv5kg6.png)
then, let
![\begin{gathered} \text{time}=\text{ unknown= t} \\ A=30 \\ P=60 \\ r=0.088 \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/33gzel2qvh7o74558tutsimmryfr1fwiak.png)
replace
![\begin{gathered} P(t)=30(1+0.088)^t \\ 60=30(1+0.088)^t \\ 60=30(1.088)^t \\ (60)/(30)=(1.088)^t \\ 2=(1.088)^t \\ \ln (2)=\ln (1.088)^t \\ \ln (2)=t\ln (1.088) \\ t=\frac{\ln 2}{\ln \text{ 1.088}} \\ t=8.2183 \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/klonolg6wn0mqyypnmwnhhyrlcui0qs7e3.png)
therefore, the time is
D)8.21 years
I hope this helps you