The Binomial Theorem
It describes the algebraic expansion of powers of a binomial.
The general formula for the expansion of the binomial is:
![(a+b)^n=\sum ^(k=n)_(k=0)\binom{n}{k}a^kb^(n-k)](https://img.qammunity.org/2023/formulas/mathematics/college/uh56ob8wffnkq9ayu34agmoiai19rlwifk.png)
Given the expression:
![\mleft(3x^5-(1)/(9)y^3\mright)^4](https://img.qammunity.org/2023/formulas/mathematics/college/ygszwwuz5bysoptfd5wxrchtki5ufu4ab1.png)
This corresponds to the formula written above for the values:
![a=3x^5,b=-(1)/(9)y^3,n=4](https://img.qammunity.org/2023/formulas/mathematics/college/qbr8ttuoo9mrr9ftyo8q9zrqjiopjb7fct.png)
(a) The expression can be written in summation form as:
![(3x^5-(1)/(9)y^3)^4=\sum ^(k=4)_(k=0)\binom{4}{k}(3x^5)^k\mleft(-(1)/(9)y^3\mright)^(4-k)](https://img.qammunity.org/2023/formulas/mathematics/college/d6q3ilml2022zkn6phgvt8o8gfhnj2981k.png)
(b) It's required to write the full expansion. We expand the summation as follows (the left part will be omitted for limitations of space):
![\begin{gathered} \binom{4}{0}(3x^5)^0\mleft(-(1)/(9)y^3\mright)^4+\binom{4}{1}(3x^5)^1(-(1)/(9)y^3)^3+\binom{4}{2}(3x^5)^2(-(1)/(9)y^3)^2+ \\ +\binom{4}{3}(3x^5)^3(-(1)/(9)y^3)^1+\binom{4}{4}(3x^5)^4(-(1)/(9)y^3)^0 \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/it0cuh4c0ssdsxmxl0dlh6rerqczx0nro1.png)
Operating:
![\begin{gathered} 1\cdot(1)^{}((1)/(6561)y^(12))^{}+4(3x^5)(-(1)/(729)y^9)+6(9x^(10))((1)/(81)y^6)+ \\ +4(27x^(15))(-(1)/(9)y^3)+1\cdot(81x^(20))(1) \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/req844ywiz2l3uqris08s18cj6r1zjch4i.png)
Simplifying:
![(y^(12))/(6561)^{}-(4x^5y^9)/(243)+(2x^(10)y^6)/(3)-12x^(15)y^3+81x^(20)](https://img.qammunity.org/2023/formulas/mathematics/college/yqoqu4swvytnhxswnvzquoy8tigc6zrqml.png)