186k views
2 votes
I need help with the radical I don’t know how to solve it because I don’t know how to use the radical

I need help with the radical I don’t know how to solve it because I don’t know how-example-1
User HOKBONG
by
7.5k points

1 Answer

5 votes

We need to draw a right triangle and label the right angle and theta. Also label the legs.

The hypotenuse measures 3*square root(3).

The opposite leg measures 3.

To find the adjacent leg we can apply the Pythagorean Theorem:


h^2=a^2+b^2

Where h is the hypotenuse, a and b are the legs of the triangle.

We can replace h and a with the known values, and solve for b:


\begin{gathered} b^2=h^2-a^2 \\ b^2=(3\sqrt[]{3})^2-3^2 \\ b^2=3^2\cdot(\sqrt[]{3})^2-3^2 \\ b^2=9\cdot3-9 \\ b^2=27-9 \\ b^2=18 \\ \sqrt[]{b^2}=\sqrt[]{18} \\ b=\sqrt[]{9*2} \\ b=\sqrt[]{9}*\sqrt[]{2} \\ b=3\sqrt[]{2} \end{gathered}

Then, the adjacent leg measures 3*square root(2).

Now, we need to find the 6 trigonometric functions:

Start with the sine function:


\begin{gathered} \sin \theta=(opposite)/(hypotenuse) \\ \sin \theta=\frac{3}{3\sqrt[]{3}} \\ We\text{ can simplify 3/3=1} \\ \sin \theta=\frac{1}{\sqrt[]{3}} \end{gathered}

Cosine:


\begin{gathered} \cos \theta=(adjacent)/(hypotenuse) \\ \cos \theta=\frac{3\sqrt[]{2}}{3\sqrt[]{3}} \\ \text{Simplify 3/3=1} \\ \cos \theta=\frac{\sqrt[]{2}}{\sqrt[]{3}} \\ \text{Apply the quotient property of square roots} \\ \cos \theta=\sqrt[]{(2)/(3)} \end{gathered}

Tangent:


\begin{gathered} \tan \theta=(opposite)/(adjacent) \\ \tan \theta=\frac{3}{3\sqrt[]{2}} \\ \text{Simplify 3/3=1} \\ \tan \theta=\frac{1}{\sqrt[]{2}} \end{gathered}

Cosecant:


\begin{gathered} \csc \theta=(hypotenuse)/(opposite) \\ \csc \theta=\frac{3\sqrt[]{3}}{3} \\ Simplify\text{ 3/3=1} \\ \csc \theta=\sqrt[]{3} \end{gathered}

Secant:


\begin{gathered} \sec \theta=(hypotenuse)/(adjacent) \\ \sec \theta=\frac{3\sqrt[]{3}}{3\sqrt[]{2}} \\ Simplify\text{ 3/3=1} \\ \sec \theta=\frac{\sqrt[]{3}}{\sqrt[]{2}} \\ \sec \theta=\sqrt[]{(3)/(2)} \end{gathered}

Cotangent:


\begin{gathered} \cot \theta=(adjacent)/(opposite) \\ \cot \theta=\frac{3\sqrt[]{2}}{3} \\ \text{Simplify 3/3=1} \\ \cot \theta=\sqrt[]{2} \end{gathered}

I need help with the radical I don’t know how to solve it because I don’t know how-example-1
User Martin Drapeau
by
8.0k points

No related questions found

Welcome to QAmmunity.org, where you can ask questions and receive answers from other members of our community.

9.4m questions

12.2m answers

Categories