4.2k views
2 votes
Here are summary statistics for randonly selected weights of newbor girls: n - 245, x-28.6hg s-7.5hgConstruct a confidence interval estimate of the mean. Use a 90% confidence level, Are these results verydifferent from the confidence interval 27.0 hg

Here are summary statistics for randonly selected weights of newbor girls: n - 245, x-example-1
User Rmaddy
by
8.5k points

1 Answer

4 votes

We have to calculate the 90% confidence interval for the mean.

The population standard deviation is not known, so we have to estimate it from the sample standard deviation and use a t-students distribution to calculate the critical value

(NOTE: although we have a relatively big sample, so it wouldn't be too wrong to approximate the standard deviation of the population with the sample one.. Even though, we will use the Student's t test as usual for unknown population standard deviations).

When σ is not known, s divided by the square root of N is used as an estimate of σM:


s_M=(s)/(√(N))=(7.5)/(√(245))=(7.5)/(15.652)=0.479

The degrees of freedom for this sample size are:


df=n-1=245-1=244

The t-value for a 90% confidence interval and 244 degrees of freedom is t = 1.651.

The margin of error (MOE) can be calculated as:


MOE=t\cdot s_M=1.651\cdot0.479=0.791

Then, the lower and upper bounds of the confidence interval are:


\begin{gathered} LL=M-t\cdot s_M=28.6-0.791=27.8 \\ UL=M+t\cdot s_M=28.6+0.791=29.4 \end{gathered}

The confidence interval for the population mean is:


27.8<\mu<29.4

If we compare this interval with the one calcualted for a smaller sample, we can see that the limits are very similar and both CI contain both sample means.

Answer:

27.8 hg < μ < 29.4 hg.

A. No, because the confidence interval limits are similar.

User Gayathri Ravi
by
8.5k points
Welcome to QAmmunity.org, where you can ask questions and receive answers from other members of our community.

9.4m questions

12.2m answers

Categories