18.4k views
3 votes
Help simplify steps of the expression using the properties of rational exponents

Help simplify steps of the expression using the properties of rational exponents-example-1
User MichaelV
by
7.9k points

1 Answer

3 votes

Given:


\sqrt[3]{875x^5y^9}

Simplify the expression


\begin{gathered} \sqrt[3]{875x^5y^9} \\ =\sqrt[3]{7*125^{}* x^3* x^2* y^3* y^3* y^3} \\ =\sqrt[3]{7*5^3* x^3* x^2* y^3* y^3* y^3} \end{gathered}

Simplify further by taking the cube root of the expression

This gives


\begin{gathered} \sqrt[3]{7*5^3* x^3* x^2* y^3* y^3* y^3} \\ =5* x* y* y* y*\sqrt[3]{7* x^2} \\ =5xy^3\sqrt[3]{7* x^2} \\ =5\cdot x\cdot y^3(7^{(1)/(3)}* x^{(2)/(3)}) \end{gathered}

The above result can be simplified as


\begin{gathered} 5\cdot x\cdot y^3(7^{(1)/(3)}* x^{(2)/(3)}) \\ =5^1\cdot7^{(1)/(3)}\cdot x^1\cdot x^{(2)/(3)}\cdot y^3 \end{gathered}

Using the same steps, the given expression can be simplified as shown below


\begin{gathered} \sqrt[3]{875x^5y^9} \\ =\sqrt[3]{7*125^{}* x^5* y^9} \\ =\sqrt[3]{125*7}*\sqrt[3]{x^5}*\sqrt[3]{y^9} \\ =(125*7)^{(1)/(3)}\cdot x^{(5)/(3)}* y^{(9)/(3)}^{} \end{gathered}

Solving the given expression completely


\begin{gathered} \sqrt[3]{875x^5y^9} \\ =(875x^5y^9)^{(1)/(3)} \\ =(125*7)^{(1)/(3)}* x^{(5)/(3)}* y^{(9)/(3)} \\ =125^{(1)/(3)}*7^{(1)/(3)}* x^{((3)/(3)+(2)/(3))}* y^3 \\ =5*7^{(1)/(3)}* x^1* x^{(2)/(3)}* y^3 \\ =5xy^3(7^{(1)/(3)}* x^{(2)/(3)}) \end{gathered}

User Liberforce
by
8.2k points

No related questions found

Welcome to QAmmunity.org, where you can ask questions and receive answers from other members of our community.

9.4m questions

12.2m answers

Categories