Solution
Step 1:
The magnitude of a vector is the length of the vector itself.
Given a bi-dimensional vector, the magnitude of the vector is given by:
![\text{v = }√(v_x^2+v_y^2)](https://img.qammunity.org/2023/formulas/mathematics/college/ut9qdbpvid61y0qsd9pi9gps7oee8vf8at.png)
Step 2:
where
Vx is the x-component of the vector
Vy is the y-component of the vector
Step 3:
The vector in the problem is ( 7 , -5 )
Where
![\begin{gathered} v_x\text{ = 7} \\ v_y\text{ = -5} \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/go4dalwz4n1de8cualonqaytkbl2xfv9ju.png)
Step 4:
![\begin{gathered} \text{v = }\sqrt{7^2\text{ + \lparen-5\rparen}^2} \\ \text{v = }\sqrt{49\text{ + 25}} \\ \text{v = }√(74) \\ \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/dl3zjza5l75sargxqsbkcw9poe8p1o8g9c.png)
Final answer
![\begin{gathered} Magnitude\text{ of the vector is} \\ √(74)\text{ or 8.6} \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/ovc8wrb0pvy17u2jrgc1lsgkh8a47ii5ll.png)